科学家解耦钠离子层状氧化物正极材料空气稳定性 |
|||
|
|||
层状氧化物正极材料因高能量密度和易于规模化生产的特性,在锂离子电池和钠离子电池领域具有重要作用。得益于钠资源的广泛可得性以及在过渡金属元素选择上的高灵活性,无需依赖昂贵的钴和镍,可以采用成本效益更高的铁和铜作为替代,钠离子层状氧化物正极材料展现出成本效益。这预示着该材料在大规模储能应用中具有广阔的前景。然而,这类材料对空气的敏感性问题不容忽视。多数钠离子层状氧化物正极材料在暴露于空气中几小时内便可发生劣化,导致钠含量下降,造成电池容量的不可逆损失。此外,材料表面生成的碱性物质可能在电极浆料制备过程中引发凝胶化现象。这增加了涂覆难度,或导致电池内阻增加和产气问题,进而影响电池性能。 探讨上述问题的根本原因并制定出可行的设计原则是科研工作者追求的目标,也是推动钠离子电池走向实用化的关键一步。然而,反应的复杂性、原有杂质的干扰以及缺乏有效的原位观测技术,使得真实反应过程变得模糊不清,并导致较多假设产生。这些假设几乎探讨了空气与材料相互作用的所有可能性,但对于材料劣化的具体过程和机理缺乏清晰的观察和系统的解析。同时,由于缺乏统一的劣化条件和标准化的定量分析方法,对不同材料的性能进行定量比较变得更加困难,这在较大程度上限制了研究人员提出合理的材料改性设计原则。 为突破这一瓶颈,中国科学院物理研究所胡勇胜团队自2015年发现空气稳定性良好的铜铁锰基钠离子层状氧化物正极材料以来便持续研究这一问题。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心研究员胡勇胜、副研究员陆雅翔,联合长三角物理研究中心特聘研究员容晓晖、燕山大学教授黄建宇,结合多种先进表征方法,系统性地解耦了不同气体与钠离子层状氧化物正极材料的相互作用,并阐明了材料的劣化路径。该团队创新性地开发出标准化测试方法,实现了对不同材料空气稳定性的定量比较,明确了影响材料空气稳定性的本征因素,提出了合理的材料改性设计原则。相关研究成果以Decoupling the air sensitivity of Na-layered oxides为题,发表在《科学》(Science)上。 该工作以NaNi1/3Fe1/3Mn1/3O2作为模型材料并扩展至其同系物,使用原位环境气氛透射电镜、同位素标记法、二次离子质谱、中子散射、同步辐射X射线吸收谱等先进表征方法,解耦了不同气体组分与层状氧化物的相互作用。研究发现,水蒸气、二氧化碳或氧气单独存在时不会引发材料显著的劣化反应,这挑战了三种气体尤其是水蒸气单独即可引发剧烈劣化反应的传统观点。水蒸气在劣化过程中起到关键的桥梁作用,通过与二氧化碳或氧气共存,分别引发材料的酸性降解和氧化降解过程。其中,酸性降解将引发剧烈的Na+/H+交换,在材料表面形成碳酸钠或碳酸氢钠,同时将引发裂纹拓展生长、晶格扭曲、位错产生和强酸性条件下的表面过渡金属离子还原和重构等后续反应。氧化降解中,体相中氧化物氧化还原电位较低的过渡金属离子将优先被氧化,同时释放出钠离子到表面以平衡电荷,而被氧化的过渡金属离子在表面通常不稳定,易被还原从而引发表面重构。 该工作提出了打破气体间的耦合作用是实现材料稳定存储的关键外在因素。为了量化层状氧化物正极材料的空气劣化程度,该团队开发了基于滴定气相色谱技术的标准化空气稳定性测试方法,以定量评价不同反应路径的贡献和比较不同材料的空气稳定性。根据30余种材料劣化后钠损失量的定量分析,并受前期成果的启发,该团队定义了一个新参数——阳离子竞争系数η。该参数包含过渡金属的加权平均离子势、初始钠含量和钠的离子势,可反应脱钠的难易程度。研究发现,酸性降解是主导整体劣化过程的关键因素;降低阳离子竞争系数和增加颗粒尺寸可以提升材料抵抗酸性劣化的能力;选择高电位的氧化还原对可以增强材料的抗氧化劣化的能力。基于对提升层状氧化物空气稳定性的认识,该团队设计了改性材料Na0.96Ca0.02Cu0.1Ni0.35Fe0.1Mn0.2Ti0.25O2,可将钠损失量由模型材料的0.489降低至0.019。 该工作揭示了材料界面和体相的劣化演变过程,明确了影响材料空气稳定性的本征因素,提出了相应的改善策略,为设计更稳定、更耐用的层状氧化物正极材料提供了技术方法和指导原则。 研究工作得到国家自然科学基金、国家重点研发计划、中国科学院战略性先导科技专项、中国科学院青年创新促进会会员项目、中国科协青年人才托举工程、河北省自然科学基金的支持。 |
|||
【打印本页】
【关闭窗口】 |