12月7日,北京理工大学材料学院李丽教授、吴锋院士课题组在高比能全固态锂离子电池研究中取得重要进展,对高镍正极设计了一种竞争掺杂策略,成功实现了异质原子(Ta)对高镍正极的体相掺杂,以及压电材料(LiNbO3)对高镍正极进行表面修饰,同时提升了高镍正极的内禀稳定性以及其与硫化物固态电解质的界面兼容性,显著提升了全固态电池的循环稳定性。相关成果发表以“Chemical Competing Diffusion for Practical All-Solid-State Batteries”为题发表于Journal of the American Chemical Society。北京理工大学材料学院2022级博士研究生代中盛为第一作者,博士后研究员孙璇为共同第一作者。

日益严重的能源危机和环境问题促进了人们对先进能源材料的探索和开发。锂离子电池作为一种新型储能装置,已成功应用于电动汽车和智能电网。目前基于液态电解质的锂离子电池已经可以实现优越的循环,并且部分固态电解质的锂离子电导率也与液态电解质相当。然而,高比能高镍正极匹配硫化物固态电解质时发生的一系列失效反应严重阻碍了全固态电池的循环寿命。首先,高镍正极内禀的低稳定性造成了其晶体结构的快速破坏;其次,高镍正极析出的氧气不仅造成其本身发生界面相变,也造成了其对固态电解质的化学氧化;另外,高镍正极与电解质固-固界面的低兼容性形成的空间电荷层也严重阻碍了离子输运。

鉴于此,北京理工大学材料学院李丽教授、吴锋院士课题组提出了一种利用竞争掺杂的方式稳定高镍正极进而提升其与固态电解质表面兼容性的策略。具体来说,由于高镍正极前驱体在拓扑锂化过程中产生的过渡金属空位有限,因此Ta和Nb原子在掺杂过程中表现出竞争特性。在本工作中,计算和实验证实了Ta更容易掺杂进入高镍正极,由于其与氧有更高的键能,防止了氧在高电压下的过度氧化,显著提升了高镍正极的稳定性。此外,Nb易于和表面残锂发生反应,生成具有压电特性的铌酸锂,有效了增加了其与固态电解质的界面兼容性,提升了其电化学性能。


【打印本页】 【关闭窗口】